资源类型

期刊论文 1356

会议视频 76

会议信息 4

会议专题 1

年份

2024 2

2023 132

2022 174

2021 147

2020 103

2019 93

2018 90

2017 61

2016 67

2015 74

2014 47

2013 48

2012 47

2011 53

2010 66

2009 46

2008 41

2007 25

2006 16

2005 13

展开 ︾

关键词

能源 54

可持续发展 14

核能 11

可再生能源 10

碳中和 10

节能 10

能源安全 6

2035 4

新能源 4

氢能 4

能源战略 4

能源结构 4

能源转型 4

能源革命 4

节能减排 4

节能环保 4

“一带一路” 3

中国 3

中长期 3

展开 ︾

检索范围:

排序: 展示方式:

The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic

Andrew LOCKLEY, Ted von HIPPEL

《工程管理前沿(英文)》 2021年 第8卷 第3期   页码 456-464 doi: 10.1007/s42524-020-0102-8

摘要: Liquid Air Energy Storage (LAES) is at pilot scale. Air cooling and liquefaction stores energy; reheating revaporises the air at pressure, powering a turbine or engine (Ameel et al., 2013). Liquefaction requires water & CO removal, preventing ice fouling. This paper proposes subsequent geological storage of this CO – offering a novel Carbon Dioxide Removal (CDR) by-product, for the energy storage industry. It additionally assesses the scale constraint and economic opportunity offered by implementing this CDR approach. Similarly, established Compressed Air Energy Storage (CAES) uses air compression and subsequent expansion. CAES could also add CO scrubbing and subsequent storage, at extra cost. CAES stores fewer joules per kilogram of air than LAES – potentially scrubbing more CO per joule stored. Operational LAES/CAES technologies cannot offer full-scale CDR this century (Stocker et al., 2014), yet they could offer around 4% of projected CO disposals for LAES and<25% for current-technology CAES. LAES CDR could reach trillion-dollar scale this century (20 billion USD/year, to first order). A larger, less certain commercial CDR opportunity exists for modified conventional CAES, due to additional equipment requirements. CDR may be commercially critical for LAES/CAES usage growth, and the necessary infrastructure may influence plant scaling and placement. A suggested design for low-pressure CAES theoretically offers global-scale CDR potential within a century (ignoring siting constraints) – but this must be costed against competing CDR and energy storage technologies.

关键词: carbon dioxide removal     Liquid Air Energy Storage     Compressed Air Energy Storage     geoengineering    

Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioning

SHI Mingheng, DU Bin, ZHAO Yun

《能源前沿(英文)》 2007年 第1卷 第1期   页码 85-90 doi: 10.1007/s11708-007-0008-8

摘要: Solar liquid desiccant air-conditioner is a new air-conditioning system in which liquid desiccant can be regenerated by solar energy and energy can be stored in the form of chemical energy in the liquid desiccant. In this paper regeneration and energy storage characteristics were studied theoretically and experimentally. Two criterion equations for heat and mass transfer in the regeneration process were obtained. The main factors that influence the regeneration process were analyzed. A principal solar liquid desiccant air-conditioning system under energy storage operating mode is proposed.

关键词: desiccant air-conditioning     regeneration process     air-conditioning system     energy     regeneration    

Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 412-427 doi: 10.1007/s11708-023-0879-3

摘要: The coal-to-liquid coupled with carbon capture, utilization, and storage technology has the potential to reduce CO2 emissions, but its carbon footprint and cost assessment are still insufficient. In this paper, coal mining to oil production is taken as a life cycle to evaluate the carbon footprint and levelized costs of direct-coal-to-liquid and indirect-coal-to-liquid coupled with the carbon capture utilization and storage technology under three scenarios: non capture, process capture, process and public capture throughout the life cycle. The results show that, first, the coupling carbon capture utilization and storage technology can reduce CO2 footprint by 28%–57% from 5.91 t CO2/t·oil of direct-coal-to-liquid and 24%–49% from 7.10 t CO2/t·oil of indirect-coal-to-liquid. Next, the levelized cost of direct-coal-to-liquid is 648–1027 $/t of oil, whereas that of indirect-coal-to-liquid is 653–1065 $/t of oil. When coupled with the carbon capture utilization and storage technology, the levelized cost of direct-coal-to-liquid is 285–1364 $/t of oil, compared to 1101–9793 $/t of oil for indirect-coal-to-liquid. Finally, sensitivity analysis shows that CO2 transportation distance has the greatest impact on carbon footprint, while coal price and initial investment cost significantly affect the levelized cost of coal-to-liquid.

关键词: coal-to-liquid     carbon capture     utilization and storage (CCUS)     carbon footprint     levelized cost of liquid     lifecycle assessment    

Research progress in liquid desiccant air-conditioning devices and systems

Xiaohua LIU, Yi JIANG, Shuanqiang LIU, Xiaoyang CHEN,

《能源前沿(英文)》 2010年 第4卷 第1期   页码 55-65 doi: 10.1007/s11708-009-0082-1

摘要: The developments on liquid desiccant air-conditioning systems were illustrated and summarized in this paper. In order to obtain a better dehumidification (or humidification) performance, liquid desiccant should be cooled (or heated) rather than air. Two fundamental modules were proposed, including basic spray module with extra heat exchanger and total heat recovery device, which could be combined to set up various kinds of liquid desiccant air processors. The operating principle of heat pump-driven outdoor air processor as well as heat-driven outdoor air processor was analyzed. The COP of the heat pump (or power)-driven outdoor air processor could be as high as 5.0 both in summer and in winter operating conditions. The COP of the hot water-driven processor (65°C–80°C) was 1.19 and 0.93, respectively, using evaporative indoor exhaust air or cooling water to cool the dehumidification process. The liquid desiccant air processor-based temperature and humidity-independent control air-conditioning system could save 20%–30% operating energy compared with the conventional air-conditioning system.

关键词: liquid desiccant     heat and mass transfer     performance     air-conditioning    

Energy storage resources management: Planning, operation, and business model

《工程管理前沿(英文)》   页码 373-391 doi: 10.1007/s42524-022-0194-4

摘要: With the acceleration of supply-side renewable energy penetration rate and the increasingly diversified and complex demand-side loads, how to maintain the stable, reliable, and efficient operation of the power system has become a challenging issue requiring investigation. One of the feasible solutions is deploying the energy storage system (ESS) to integrate with the energy system to stabilize it. However, considering the costs and the input/output characteristics of ESS, both the initial configuration process and the actual operation process require efficient management. This study presents a comprehensive review of managing ESS from the perspectives of planning, operation, and business model. First of all, in terms of planning and configuration, it is investigated from capacity planning, location planning, as well as capacity and location combined planning. This process is generally the first step in deploying ESS. Then, it explores operation management of ESS from the perspectives of state assessment and operation optimization. The so-called state assessment refers to the assessment of three aspects: The state of charge (SOC), the state of health (SOH), and the remaining useful life (RUL). The operation optimization includes ESS operation strategy optimization and joint operation optimization. Finally, it discusses the business models of ESS. Traditional business models involve ancillary services and load transfer, while emerging business models include electric vehicle (EV) as energy storage and shared energy storage.

关键词: energy storage system     energy storage resources management     planning configuration     operational management     business model    

Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics

Dan DAI, Jing LIU, Yixin ZHOU

《能源前沿(英文)》 2012年 第6卷 第2期   页码 112-121 doi: 10.1007/s11708-012-0186-x

摘要: A liquid metal magnetohydrodynamics generation system (LMMGS) was proposed and demonstrated in this paper for collecting parasitic power in shoe while walking. Unlike the conventional shoe-mounted human power harvesters that use solid coil and gear mechanism, the proposed system employs liquid metal (Ga In Sn ) as energy carrier, where no moving part is requested in magnetohydrodynamics generators (MHGs). While walking with the LMMGS, the foot alternately presses the two liquid metal pumps (LMPs) which are respectively placed in the front and rear of the sole. As a result, the liquid metal in the LMPs (LMP I and II) is extruded and flows through the MHGs (MHG I and II) in which electricity is produced. For a comparison, three types of LMMGSs (LMMGS A, B and C) were built where all the parts are the same except for the LMPs. Furthermore, performances of these LMMGSs with different volume of injected liquid metal were tested respectively. Experimental results reveal that both the output voltage and power of the LMMGS increase with the volume of injected liquid metal and the size of the LMPs. In addition, a maximum output power of 80 mW is obtained by the LMMGS C with an efficiency of approximately 1.3%. Given its advantages of no side effect, light weight, small size and reliability, The LMMGS is well-suited for powering the wearable and implantable micro/nano device, such as wearable sensors, drug pumps and so on.

关键词: human energy harvesting     liquid metal     wearable magnetohydrodynamics generator     parasitic power in shoe    

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

《能源前沿(英文)》 2023年 第17卷 第4期   页码 516-526 doi: 10.1007/s11708-022-0844-6

摘要: A two-stage gas-coupled Stirling/pulse tube refrigerator (SPR), whose first and second stages respectively involve Stirling and pulse tube refrigeration cycles, is a very promising spaceborne refrigerator. The SPR has many advantages, such as a compact structure, high reliability, and high performance, and is expected to become an essential refrigerator for space applications. In research regarding gas-coupled regenerative refrigerator, the energy flow distribution between the two stages, and optimal phase difference between the pressure wave and volume flow, are two critical parameters that could widely influence refrigerator performance. The effects of displacer displacement on the pressure wave, phase difference, acoustic power distribution, and inter-stage cooling capacity shift of the SPR have been investigated experimentally. Notably, to obtain the maximum first-stage cooling capacity, an inflection point in displacement exists. When the displacer displacement is larger than the inflection point, the cooling capacity could be distributed between the first and second stages. In the present study, an SPR was designed and manufactured to work between the liquid hydrogen and liquid oxygen temperatures, which can be used to cool small-scale zero boil-off systems and space detectors. Under appropriate displacer displacement, the SPR can reach a no-load cooling temperature of 15.4 K and obtain 2.6 W cooling capacity at 70 K plus 0.1 W cooling capacity at 20 K with 160 W compressor input electric power.

关键词: Stirling/pulse tube refrigerator     displacer displacement     space application     phase shift     energy distribution    

Can energy storage make off-grid photovoltaic hydrogen production system more economical?

《工程管理前沿(英文)》   页码 672-694 doi: 10.1007/s42524-022-0245-x

摘要: Under the ambitious goal of carbon neutralization, photovoltaic (PV)-driven electrolytic hydrogen (PVEH) production is emerging as a promising approach to reduce carbon emission. Considering the intermittence and variability of PV power generation, the deployment of battery energy storage can smoothen the power output. However, the investment cost of battery energy storage is pertinent to non-negligible expenses. Thus, the installation of energy-storage equipment in a PVEH system is a complex trade-off problem. The primary goals of this study are to compare the engineering economics of PVEH systems with and without energy storage, and to explore time nodes when the cost of the former scenario can compete with the latter by factoring the technology learning curve. The levelized cost of hydrogen (LCOH) is a widely used economic indicator. Represented by seven areas in seven regions of China, results show that the LCOH with and without energy storage is approximately 22.23 and 20.59 yuan/kg in 2020, respectively. In addition, as technology costs drop, the LCOH of a PVEH system with energy storage will be less than that without energy storage in 2030.

关键词: hydrogen     off-grid photovoltaic     energy storage     LCOH     engineering economics    

Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system

Weilong WANG, Yukun HU, Jinyue YAN, Jenny NYSTR?M, Erik DAHLQUIST

《能源前沿(英文)》 2010年 第4卷 第4期   页码 469-474 doi: 10.1007/s11708-010-0123-9

摘要: Energy consumption for space and tap water heating in residential and service sectors accounts for one third of the total energy utilization in Sweden. District heating (DH) is used to supply heat to areas with high energy demand. However, there are still detached houses and sparse areas that are not connected to a DH network. In such areas, electrical heating or oil/pellet boilers are used to meet the heat demand. Extending the existing DH network to those spare areas is not economically feasible because of the small heat demand and the large investment required for the expansion. The mobilized thermal energy storage (M-TES) system is an alternative source of heat for detached buildings or sparse areas using industrial heat. In this paper, the integration of a combined heat and power (CHP) plant and an M-TES system is analyzed. Furthermore, the impacts of four options of the integrated system are discussed, including the power and heat output in the CHP plant. The performance of the M-TES system is likewise discussed.

关键词: Mobilized thermal energy system     district heating     thermal energy storage     combined heat and power     detached houses    

Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

Dawid P. Hanak, Vasilije Manovic

《化学科学与工程前沿(英文)》 2020年 第14卷 第3期   页码 453-459 doi: 10.1007/s11705-019-1892-2

摘要: Renewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation.

关键词: carbon capture     energy storage     renewable energy sources     decarbonisation     fossil fuels    

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1301-1314 doi: 10.1007/s11709-022-0883-4

摘要: Thermal energy storage recycled powder mortar (TESRM) was developed in this study by incorporating paraffin/recycled brick powder (paraffin/BP) composite phase change materials (PCM). Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability. The onset melting temperature and latent heat of the composite PCM were 46.49 °C and 30.1 J·g−1. The fresh mortar properties and hardened properties were also investigated in this study. Paraffin/BP composite PCM with replacement ratio of 0%, 10%, 20%, and 30% by weight of cement were studied. The results showed that the static and dynamic yield stresses of TESRM were 699.4% and 172.9% higher than those of normal mortar, respectively. The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages, and could also reduce the dry shrinkage of mortar. The dry shrinkage of TESRM had a maximum reduction about 26.15% at 120 d. The thermal properties of TESRM were better than those of normal mortar. The thermal conductivity of TESRM was 36.3% less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.

关键词: recycled powder mortar     recycled brick powder     thermal energy storage     paraffin     phase change material    

Optimal portfolio design of energy storage devices with financial and physical right market

《能源前沿(英文)》 2022年 第16卷 第1期   页码 95-104 doi: 10.1007/s11708-021-0788-2

摘要: With the continuous development of the spot market, in the multi-stage power market environment with the day-ahead market and right market, the study associated with the portfolio of energy storage devices requires that attention should be paid to transmission congestion and power congestion. To maximize the profit of energy storage and avoid the imbalance of power supply and consumption and the risk of node price fluctuation caused by transmission congestion, this paper presents a portfolio strategy of energy storage devices with financial/physical contracts. First, the concepts of financial/physical transmission rights and financial/physical storage rights are proposed. Then, the portfolio models of financial contract and physical contract are established with the conditional value-at-risk to measure the risks. Finally, the portfolio models are verified through the test data of the Pennsylvania-New Jersey-Maryland (PJM) electric power spot market, and the comparison between the risk aversion of portfolios based on financial/physical contract with the portfolio of the market without rights. The simulation results show that the portfolio models proposed in this paper can effectively avoid the risk of market price fluctuations.

关键词: portfolio     node price fluctuation     transmission right     energy storage right     risk aversion    

Systematic screening procedure and innovative energy-saving design for ionic liquid-based extractive

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 34-45 doi: 10.1007/s11705-022-2234-3

摘要: In the traditional extractive distillation process, organic solvents are often used as entrainers. However, environmental influence and high energy-consumption are significant problems in industrial application. In this study, a systematic screening strategy and innovative energy-saving design for ionic liquid-based extractive distillation process was proposed. The innovative energy-saving design focused on the binary minimum azeotrope mixtures isopropanol and water. Miscibility, environmental impact and physical properties (e.g., melting point and viscosity) of 30 ionic liquids were investigated. 1-Ethyl-3-methyl-imidazolium dicyanamide and 1-butyl-3-methyl-imidazolium dicyanamide were selected as candidate entrainers. Feasibility analysis of these two ionic liquids was further performed via residue curve maps, isovolatility line and temperature profiles. An innovative ionic liquid-based extractive distillation process combining distillation column and stripping column was designed and optimized with the objective function of minimizing the total annualized cost. The results demonstrate that the total annualized cost was reduced by 19.9% with 1-ethyl-3-methyl-imidazolium dicyanamide as the entrainer and by 24.3% with 1-butyl-3-methyl-imidazolium dicyanamide, compared with that of dimethyl sulfoxide. The method proposed in this study is conducive to the green and sustainable development of extractive distillation process.

关键词: ionic liquid     entrainer screening     feasibility analysis     extractive distillation    

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

《能源前沿(英文)》 doi: 10.1007/s11708-023-0913-5

摘要: Highly efficient and stable iron electrodes are of great significant to the development of iron-air battery (IAB). In this paper, iron nanoparticle-encapsulated C–N composite (NanoFe@CN) was synthesized by pyrolysis using polyaniline as the C–N source. Electrochemical performance of the NanoFe@CN in different electrolytes (alkaline, neutral, and quasi-neutral) was investigated via cyclic voltammetry (CV). The IAB was assembled with NanoFe@CN as the anode and IrO2 + Pt/C as the cathode. The effects of different discharging/charging current densities and electrolytes on the battery performance were also studied. Neutral K2SO4 electrolyte can effectively suppress the passivation of iron electrode, and the battery showed a good cycling stability during 180 charging/discharging cycles. Compared to the pure nano-iron (NanoFe) battery, the NanoFe@CN battery has a more stable cycling stability either in KOH or NH4Cl + KCl electrolyte.

关键词: energy storage and conversion     metallic composites     nanocomposites     iron-air battery     iron anode    

Smart residential energy management system for demand response in buildings with energy storage devices

S. L. ARUN, M. P. SELVAN

《能源前沿(英文)》 2019年 第13卷 第4期   页码 715-730 doi: 10.1007/s11708-018-0538-2

摘要: In the present scenario, the utilities are focusing on smart grid technologies to achieve reliable and profitable grid operation. Demand side management (DSM) is one of such smart grid technologies which motivate end users to actively participate in the electricity market by providing incentives. Consumers are expected to respond (demand response (DR)) in various ways to attain these benefits. Nowadays, residential consumers are interested in energy storage devices such as battery to reduce power consumption from the utility during peak intervals. In this paper, the use of a smart residential energy management system (SREMS) is demonstrated at the consumer premise to reduce the total electricity bill by optimally time scheduling the operation of household appliances. Further, the SREMS effectively utilizes the battery by scheduling the mode of operation of the battery (charging/floating/discharging) and the amount of power exchange from the battery while considering the variations in consumer demand and utility parameters such as electricity price and consumer consumption limit (CCL). The SREMS framework is implemented in Matlab and the case study results show significant yields for the end user.

关键词: smart grid     demand side management (DSM)     demand response (DR)     smart building     smart appliances     energy storage    

标题 作者 时间 类型 操作

The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic

Andrew LOCKLEY, Ted von HIPPEL

期刊论文

Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioning

SHI Mingheng, DU Bin, ZHAO Yun

期刊论文

Lifecycle carbon footprint and cost assessment for coal-to-liquid coupled with carbon capture, storage

期刊论文

Research progress in liquid desiccant air-conditioning devices and systems

Xiaohua LIU, Yi JIANG, Shuanqiang LIU, Xiaoyang CHEN,

期刊论文

Energy storage resources management: Planning, operation, and business model

期刊论文

Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics

Dan DAI, Jing LIU, Yixin ZHOU

期刊论文

Energy distribution between liquid hydrogen and liquid oxygen temperatures in a Stirling/pulse tube refrigerator

期刊论文

Can energy storage make off-grid photovoltaic hydrogen production system more economical?

期刊论文

Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system

Weilong WANG, Yukun HU, Jinyue YAN, Jenny NYSTR?M, Erik DAHLQUIST

期刊论文

Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

Dawid P. Hanak, Vasilije Manovic

期刊论文

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

期刊论文

Optimal portfolio design of energy storage devices with financial and physical right market

期刊论文

Systematic screening procedure and innovative energy-saving design for ionic liquid-based extractive

期刊论文

Performance of iron-air battery with iron nanoparticle-encapsulated C–N composite electrode

期刊论文

Smart residential energy management system for demand response in buildings with energy storage devices

S. L. ARUN, M. P. SELVAN

期刊论文